Organic Chemistry

Organic Chemistry- The study of carbon & carbon compounds

• Organic compounds are the primary constituents of all living organisms.

Draw an electron dot diagram of carbon.

Carbon is able to form 4 covalent bonds (4 valence electrons) with other carbon or other elements.

II. Characteristics of Organic Compounds

• They are nonpolar compounds – they do not dissolve in polar solvents like Water.

*remember the rule – "likes dissolve likes"

4) They have low melting points – due to weak intermolecular forces.

 They react slower than ionic compounds – due to strong covalent bonds between atoms.

<u>Structural Formulas</u> –

A 2D model shows bonding patterns and shapes of molecules

⇒ Carbon is found in the center H
 H — C — H
 The short line – represents a H
 pair of electrons.

Types Of Bonds

Single Bond – single covalent bond in which they share 1 pair of electrons. (2 e-)

$-\overset{\prime}{\mathbf{C}}\overset{\prime}{-}\overset{\prime}{\mathbf{C}}\overset{\prime}{-}$ $\bullet\overset{\bullet}{\mathbf{C}}$ $\bullet\overset{\bullet}{\mathbf{C}}$ $\bullet\overset{\bullet}{\mathbf{C}}$

Double Bond – carbon atoms may share **2** pairs of electrons to form a double bond.

Triple Bond – carbon atoms may share **3** pairs of electrons to form a triple bond.

- <u>Saturated Compound</u> organic compounds in which carbon atoms are bonded by SINGLE bonds.
 - ex. Methane: CH₄

Types Of Compounds

<u>Unsaturated Compound</u> – compounds where carbon atoms have double or triple bonds.

> ex. ethene: C_2H_4 H H H C=C H

Homologous Series of Hydrocarbons

 Organic compounds can be classified into groups with related structures and properties.

***As size of molecule increases the boiling and freezing points increase.

<u>Hydrocarbons</u> are organic compounds that consist of only Carbon and Hydrogen atoms.

Base r	names	
	Prefix	Length of carbon chain
	Meth Eth Prop	1 2 3
	But Pent Hex	4 5 6 7
	Non Dec	8 9 10

Alkanes

Simplest members of the hydrocarbon family.
contain only hydrogen and carbon
only have single bonds
Saturated hydrocarbons
All members have the general formula of CnH2n+2

Twice as many hydrogen as carbon + 2

Alkanes = $C_n H_{2n+2}$

• A saturated hydrocarbon contains 5 carbons. What is the formula?

$$C_5H_{2(5)+2} = C_5H_{12}$$

• A saturated hydrocarbon contains 20 carbons. What is the formula?

$$C_{20}H_{2(20)+2} = C_{20}H_{42}$$

Saturated = Single

Table Q Homologous Series of Hydrocarbons

Table P Organic Prefixes

Prefix	Number of Carbon Atoms
meth-	1
eth-	2
prop-	3
but-	4
pent-	5
hex-	6
hept-	7
oct-	8
non-	9
dec-	10

Name General		Examples	
	Formula	Name	Structural Formula
alkanes	$\mathbf{C}_{n}\mathbf{H}_{2n+2}$	ethane	H H H-C-C-H H H

- CH₄ = <u>methane</u>
- $C_2H_6 = \underline{ethane}$
- $C_3H_8 = propane$
- $C_4H_{10} = butane$
- $C_5H_{12} = pentane$

Alkanes

The smaller the compound the Lower Boiling point and Melting point is (less bonds to break)

Name	BP (OC)	MP (OC)	Density
Methane	-161.7	-182.6	0.424
Ethane	- 88.6	-172.0	0.546
Propane	- 42.2	-187.1	0.582
Butane	-0.5	-135.0	0.579
Pentane	36.1	-129.7	0.626
Hexane	68.7	- 94.0	0.659
Heptane	98.4	- 90.5	0.684
Octane	125.6	- 56.8	0.703
Nonane	150.7	-53.7	0.718
Decane	174.0	-29.7	0.730

Naming Organic Compounds

 Organic compounds are named according to the IUPAC (international union of pure & applied chemistry) system of nomenclature.

Alkanes – end inaneAlkenes – end ineneAlkynes – end inyne

$Alkenes - C_n H_{2n}$

series of unsaturated hydrocarbons having one double bond (C=C)

- Also called ethylene series (IUPAC name is ethene)
- General formula C_nH_{2n}

Alkenes

Table P Organic Prefixes

Prefix	Number of Carbon Atoms
meth-	1
eth-	2
prop-	3
but-	4
pent-	5
hex-	6
hept-	7
oct-	8
non-	9
dec-	10

Table Q Homologous Series of Hydrocarbons

Name	Name General	Examples		
	Formula	Name	Structural Formula	
alkenes	$\mathbf{C}_{n}\mathbf{H}_{2n}$	ethene		

- $C_2H_4 = Ethene$
- $C_3H_6 = \underline{Propene}$
- $C_4H_8 = Butene$
- $C_5H_{10} = Pentene$
- To find the number of hydrogens, double the number of carbons.

1-Butene

This is 1-butene, because the double bond is between the 1st and 2nd carbon from the end.

ISOMERS: Molecules have the same molecular formula, but have different structural formulas.

Pentene

<u>Alkynes</u> –

a series of unsaturated hydrocarbons that contain 1 triple bond.

- Also called the acetylene series
- General formula C_nH_{2n-2}

$$-C \equiv C -$$

Alkynes

Table Q Homologous Series of Hydrocarbons

	Tab	le P	
Org	anic	Prefixe	!S

Prefix	Number of Carbon Atoms
meth-	1
eth-	2
prop-	3
but-	4
pent-	5
hex-	6
hept-	7
oct-	8
non-	9
dec-	10

Name	General	Examples	
	Formula	Name	Structural Formula
alkynes	$\mathbf{C_nH_{2n-2}}$	ethyne	Н—С■С—Н

- $C_2H_2 = Ethyne$
- $C_3H_4 = \underline{Propyne}$
- $C_4H_6 = \underline{Butyne}$
- $C_5H_8 = \underline{Pentyne}$

<u>Alkyl Groups</u> – have one less hydrogen than the corresponding alkane.

> CH₃ is methyl – one less H than methane, CH₄
> H

hydrocarbon chain

Draw methyl

-C - H

C_2H_5 is ethyl – one less H than ethane C_2H_6

hydrocarbon chain

Condensed Formula:

Ethane

 $^{\circ}C_{3}H_{7}$ is **propyl** – one less H than propane $C_{3}H_{8}$

Benzene – a series of cyclic unsaturated hydrocarbons.

General formula C_nH_{2n-6}

Benzene – C_6H_6 the simplest in the family

IUPAC Naming Branched Hydrocarbon Chains

Sometimes the hydrocarbon chains are not straight and sometimes they have other elements attached to them. Here is how they are named:

$$\begin{array}{c} CH_3 - CH_2 - CH_2 - CH_1 - CH_1 - CH_1 - CH_3\\ CH_2 & CH_3 & CH_3\\ I & CH_3 \end{array}$$

- Step 1: Find the longest continuous chain of carbons.
- All bonds in the chain of carbons are single bonds so ending is..ane. There are 7 continuous carbons, so the parent chain is heptane.

- Step 2: Number the carbons in the main sequence starting with the end that will give the attached groups the smallest #.
- This chain is numbered from right to left because there is a substituent closest to the right.

$\begin{array}{c} 7 & 6 & 5 & 4 & 3 & 2 & 1 \\ CH_3 - CH_2 - CH_2 - CH_2 - CH_1 - CH_1 - CH_2 - CH_3 & CH_3 \\ CH_2 & CH_3 & CH_3 \\ CH_3 \end{array}$

- Step 3 : Add numbers to the names of the groups to identify their positions on the chain.
 - these numbers become prefixes to the parent chain.

In this ex. the positions are:

2-methyl, 3-methyl, 4-ethyl

$\begin{array}{c} 7 & 6 & 5 & 4 & 3 & 2 & 1 \\ CH_3 - CH_2 - CH_2 - CH_2 - CH_1 - CH_1 - CH_1 - CH_3 \\ CH_2 & CH_3 & CH_3 \\ CH_3 \end{array}$

• Step 4: Use prefixes to indicate the appearance of a group more than once in the structure.

Di	=	twice
Tri	=	three times
Tetra	=	four times
Penta	=	five times
7 6 5 4 3 2 1 $CH_3 - CH_2 - CH_2 - CH_1 - CH_1 - CH_2 - CH_3$ $CH_2 - CH_3 - CH_3$ CH_3 • This chain has 2 methyl groups so

Step 5: List the alkyl groups in alphabetical order.

In this ex. dimethyl is listed before the ethyl.

Step 6: Use punctuation

- use commas to separate numbers
- -hyphens to separate numbers with words.

$\begin{array}{c} 7 & 6 & 5 \\ CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3 \\ CH_2 & CH_3 \\ CH_3 \end{array}$

• The name of this compound is:

2,3-dimethyl – 4-ethyl heptane

Step 1: 6 carbons = hex All single bonds = ends in ane So parent chain is hexane

Step 2: start numbering from right to left

Step 3: 2 - methyl and 4 - methyl

2,4 dimethyl hexane

When naming with a double/triple bondstart # carbons closest to the bond.

$$\begin{array}{c} CH_{3} CH_{3} \\ - CH_{3} \\$$

3,4 dimethyl, 2-pentene

Now start with name and draw the structure.

3-ethylhexane

You can place H's all around or just leave as is.

$$\begin{array}{c} H - C - H \\ H - C - H \\ H \end{array} \begin{array}{c} yl \\ eth \\ C_2 H_{g} \\ 5 \end{array} \end{array}$$

2,2,4-trimethylpentane

<u>Functional Groups</u> – specific groupings of atoms that give characteristic properties to organic compounds.

- Alcohols
- Organic acids

-C-

- Aldehydes
- Ketones
- Ethers
- Esters
- Amines
- Amides

-OH hydroxyl -COOH carboxyl

-C-O

-CHO carbonyl

Halides

Cmpds that are formed when any halogen (F,Cl,Br,I) replaces an H atom in an alkane.

The functional group is the halide (F,CI,Br,I)

Halides

• They are named by citing the location of the halogen attached to the chain

Drop the "ine" and add "o"

2- fluoropropane

Alcohols

- Are organic cmpds in which one or more of the hydrogens is replaced with an – OH group.
 - OH group is called the hydroxyl group

Organic Functional Groups

Class of	Functional	General	Example
Compound	Group	Formula	
alcohol	—он	R — ОН	CH ₃ CH ₂ CH ₂ OH 1-propanol

Shortcut way to represent a primary alcohol R-OH

R stands for **REST** of the molecule

IUPAC naming of alcohols

- Replace the final "e" with "-ol"
 methods
 - methane \rightarrow methanol \rightarrow CH₃OH
 - ethane \rightarrow ethanol \rightarrow C₂H₅OH
 - propane \rightarrow propanol \rightarrow C₃H₇OH
 - butane \rightarrow butanol \rightarrow C₄H₉OH
 - pentane \rightarrow pentanol \rightarrow C₅H₁₁OH

Example

C-C-C-C-O-H

Base contains 4 carbon alkane name is butane remove -e and add -ol alcohol name - butanol OH is on the first carbon so -1-butanol

Organic acids – have the functional group -COOH

• R-COOH

Table R Organic Functional Groups

Class of	Functional	General	Example
Compound	Group	Formula	
organic acid	о П С—он	о П К—С—ОН	O II CH ₃ CH ₂ C—OH propanoic acid

Aldehydes- contain the functional group -CHO R-CHO R-CHO

Class of	Functional	General	Example
Compound	Group	Formula	
aldehyde	н н	R = C = H	O Ⅱ CH ₃ CH ₂ C—H propanal

IUPAC naming of Aldehydes-

- Replace the final "e" the the ending "al" First member of the aldehyde family is methanal
- -its common name is formaldehyde

H 0 | || H-C-C-H

Ethanal (acetaldehyde): a two-carbon aldehyde.

Alcohols can be oxidized to aldehydes

methanol

methanal water

Draw ethanal

Ketones – contain the functional group R-CO-R

Replace the final "e" with "-one".

Table R Organic Functional Groups

Class of	Functional	General	Example
Compound	Group	Formula	
ketone	0 	$\mathbf{R} = \mathbf{C} = \mathbf{R}'$	O II CH ₃ CCH ₂ CH ₂ CH ₃ 2-pentanone

 The simplest member of the ketone family is propanone.

 IUPAC name is propanone but its common name is acetone, it is an important industrial solvent.

Ethers -

 when two primary alcohols are treated with dehydrating agent, water is removed and the 2 alcohols are joined together by an oxygen "bridge".

Diethyl ether- used as a general anesthetic

Condensed formula

CH₃ CH₂-O- CH₂CH₃

Dimethyl ether-

Condensed formula

CH₃-O-CH₃

Name These:

Condensed $CH_3-O-CH_2CH_3$ formula Methyl ethyl ether CH₃CH₂-O-CH₂CH₂CH₃ Ethyl propyl ether

Esters – are organic cmpds with the general formula *R*-CO-O-*R*

They are formed in a rxn between an organic acid and an alcohol.

Esters have strong fragrant aromas and are what make pineapples, bananas, wintergreen & oranges so YummY!

I. Look at chain after the -C-O- write its prefix
Ex.(meth,eth, etc.) and add -y to the end of prefix

In this ex. : eth +
$$yI = ethyI$$

$\begin{array}{c} \text{Condensed formula} \\ \text{CH}_3 \text{ CH}_2 \text{ COO CH}_2 \text{CH}_3 \end{array}$

2. Give the name of the carbon chain that includes the C=O, leave off the last letter and add –oate.

Propane

propane + oate = propanoate

Ethyl propanoate

Ex.) Draw ethyl pentanoate

Now you've got it!

Amines – contain the functional group - N-

- It is a derivative of ammonia NH₃
- IUPAC naming of amines
 - replace the final -e with "-amine"

Amides – contain the functional group: 0 || | ______NH

Found at the end of a carbon chain

IUPAC naming of amides:
 -drop the final –e and add "amide"

Table R Organic Functional Groups

Class of	Functional	General	Example
Compound	Group	Formula	
amide	о — С — Ин	$\begin{array}{c} 0 & R' \\ \mathbf{II} & \mathbf{I} \\ R-\mathbf{C-NH} \end{array}$	O II CH ₃ CH ₂ C—NH ₂ propanamide

butanamide

Synthetic Polyamides: nylon, kevlar Natural Polyamide: silk!

Amide
